$\begin{array}{l} 1.19 \ (3H, \ s), \ 1.00 \ (3H, \ s), \ 0.92 \ (3H, \ s), \ 0.80 \ (3H, \ s); \ ^{13}C \ NMR \\ (CDCl_3) \ \delta \ 148.5, \ 144.4, \ 126.5, \ 122.1, \ 115.3, \ 112.4, \ 79.2, \ 76.4, \ 49.8, \\ 48.4, \ 45.1, \ 40.0, \ 38.9, \ 36.7, \ 34.7, \ 31.6, \ 31.3, \ 28.9, \ 28.5, \ 27.8, \ 24.6, \\ 23.0, \ 21.4, \ 16.9, \ 16.8, \ 15.8, \ 15.7. \ Anal. \ Calcd \ for \ C_{27}H_{40}O_3; \ C, \\ 78.59\%; \ H, \ 9.77\%. \ Found: \ C, \ 78.65\%; \ H, \ 9.68\%. \end{array}$

5'-O-Methylepitaondiol (6). Epitaondiol (**5**) (100 mg) in THF (30 mL) was treated with NaH (10 mg) and MeI (22 mg) at room temp. After 1 h, the mixture was poured into water and extracted with Et₂O. The extract was dried (anhyd MgSO₄) and filtered, and after solvent removal the residue was crystallized from hot acetone with a few drops of water, yielding 100 mg of **6** as fine colorless needles, unsuitable for X ray determination, mp 178–180 °C; $[\alpha]_{\rm D}$ +49.9 (c 2.0, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3557, 3480, 2993, 2941, 1483, 1439, 1227, 1150, 1060 cm⁻¹; ¹H NMR see Table 1; ¹³C NMR see Table 2. Anal. Calcd for C₂₈H₄₂O₃: C, 78.83%; H, 9.92%. Found: C, 78.46%; H, 9.89%.

Acknowledgment. We thank the Servei RMN of Universitat Autònoma de Barcelona for allocating spec-

trometer time to this investigation. The 400 MHz superconducting spectrometers were financed by CAICYT (contract CA86-0003) and by CICYT-CIRIT (Programa de Química Fina, contract IN90-4101-QF). We also thank Fondecyt (Project 1038-92) and DTI (Universidad de Chile) for financial support.

Supplementary Material Available: Copies of 1D and 2D NMR spectra of compounds **5–9**, methyl-methyl NOEs in oleanolic acid, table of assigned 400 MHz ¹H NMR spectrum of acetate **7**, preparation of carbamate **8** and allophanate **9** (15 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO941311T

Additions and Corrections

Vol. 57, 1992

Hisao Nemoto, J. Gerald Wilson, Hiroyuki Nakamura, and Yoshinori Yamamoto*. Polyols of a Cascade Type as a Water-Solubilizing Element of Carborane Derivatives for Boron Neutron Capture Therapy.

Page 435, Summary and column 2, the last paragraph. The water solubility of the tetrol 6a should be 5.44 mmol/L and that of the diol 5a should be 0.67 mmol/L, although the solubility was reported to be 5.44 mol/L and 0.67 mol/L, respectively. We thank Professor M. F. Hawthorne for this clarification.

JO944011K

Vol. 59, 1994

Seiichi Takano,* Takehiko Yoshimitsu, and Kunio Ogasawara. Asymmetric Dihydroxylation of a *Meso*-Symmetric Cyclic Diene Using AD-Mix Reagents: A New Enantiocontrolled Route to Conduritol E.

Page 54. Since we overlooked the correction of the absolute configuration of (+)-conduritol E (7) made by the original authors (ref 5, see: Hudlicky, T.; Luna, H.; Olivo, H. F.; Andersen, Nugent, T.; Price, J. D. J. Chem. Soc., Perkins Trans. 1 1991, 2907), all the absolute configurations shown in our paper (compounds 4–12 and 6–ent-12) were depicted in inverted forms. They, therefore, should be read in opposite configurations. We greatly appreciate Professor K. B. Sharpless, The Scripps Research Institute, for pointing out our oversight.

JO9440135

Haruyoshi Masuda, Kiyoshi Takase, Masahiro Nishio, Akira Hasegawa, Yutaka Nishiyama, and Yasutaka Ishii*. A New Synthetic Method of Preparing Iodohydrin and Bromohydrin Derivatives through *in Situ* Generation of Hypohalous Acids from H_5IO_6 and NaBrO₃ in the Presence of Na-HSO₃.

Page 5550. Reference 2 should have two additional references: Rodriguez, J.; Dulcère, J.-P. Synthesis **1993**, 1177. Bonini, C.; Righi, G. Synthesis **1994**, 225.

JO944012C

Xing-Chung Cheng, Mustafa Varoglu, Leif Abrell, Phillip Crews,* Emil Lobkovsky, and Jon Clardy*. Chloriolins A-C, Chlorinated Sesquiterpenes Produced by Fungal Cultures Separated from a *Jaspis* Marine Sponge.

Page 6345, Figure 1. The arrow legends were assigned incorrectly. Figure 1 should be as shown below.

Figure 1.

J0944010S

Francis Beaulieu and Victor Snieckus*. Directed Metalation of Diaryl Sulfone 2-Amides and 2-O-Carbamates. Regiospecific General Route to Thioxanthen-9-one 10,10-Dioxides via Anionic Friedel-Crafts and Remote Fries Rearrangement Equivalents.

Page 6509, column 1, line 4 should read "Quenching after 5 min and 1 h resulted in recovery of intractable mixtures and starting material in both cases."

Page 6509, column 2, line 1, should read "starting material (47%), thioxanthenone dioxide (43%), and 4-(trimethylsilyl)thioxanthenone dioxide"

JO944009T